(sinx)^4=[1-(cosx)^2]^2=[1-(cos2x+1)/2]^2=[(1-cos2x)/2]^2=[1-2cos2x+(cos2x)^2]/4=[1-2cos2x+(1+cos4x)/2]/4=3/8-1/2*cos2x+1/8*cos4x
主要公式(cosx)^2=(cos2x+1)/2
(sinx)^4=[1-(cosx)^2]^2=[1-(cos2x+1)/2]^2=[(1-cos2x)/2]^2=[1-2cos2x+(cos2x)^2]/4=[1-2cos2x+(1+cos4x)/2]/4=3/8-1/2*cos2x+1/8*cos4x
主要公式(cosx)^2=(cos2x+1)/2