(1)当x∈[-e,0)时可得,-x∈(0,e]
∵x∈(0,e]时,f(x)=ax+lnx
f(-x)=-ax+ln(-x)
∵函数f(x)为奇函数可得f(-x)=-f(x)
-f(x)=-ax+ln(-x)
f(x)=ax-ln(-x)
f(x)=ax+lnx,x∈(0,e]ax-ln(-x),x∈[-e,0)
证明:(2)a=-1时,f(x)=-x+lnx,x∈(0,e]-x-ln(-x),x∈[-e,0),g(x)=-lnxx,
x∈(0,e]时,f(x)=-x+lnx
f′(x)=-1+1x=1-xx
令f′(x)>0可得0<x<1,f′(x)<0可得1<x≤e
函数f(x)在(0,1]单调递增,在(1,e]单调递减
f(x)max=f(1)=-1
g(x)′=lnx-1x2,由x∈(0,e]可得g′(x)≤0
g(x)在(0,e]上单调递减
g(x)min=g(e)=-1e
-1<-1e+12
即f(x)max<g(x)min+12
当x∈(0,e]时,f(x)<g(x)+12恒成立;
(3)假设存在负数a满足条件
由(1)可得,x∈(0,e],f(x)=ax+lnx,f′(x)=a+1x
令f′(x)>0可得x<-1a,f′(x)<0可得 x>-1a
①若e>-1a,即a<-1e,则函数在(0,-1a]上单调递增,在(-1a,e]上单调递减
f(x)max=f(-1a)=a•(-1a)+ln(-1a)=-3
∴a=-1e2
②若 -1a≥e即a≥-1e,则函数在(0,e]单调递增,则f(x)max=f(e)=ae+1=-3
∴a=-4e(舍)
故 a=-1e2