解题思路:(1)证明△AGE≌△ACE,根据全等三角形的性质可得到GE=EC,再利用三角形的中位线定理证明DE∥AB,再加上条件EF∥BC可证出结论;
(2)先证明BF=DE=[1/2]BG,再证明AG=AC,可得到BF=[1/2](AB-AG)=[1/2](AB-AC).
(1)证明:延长CE交AB于点G,
∵AE⊥CE,
∴∠AEG=∠AEC=90°,
在△AEG和△AEC中,
∠GAE=∠CAE
AE=AE
∠AEG=∠AEC
∴△AGE≌△ACE(ASA).
∴GE=EC.
∵BD=CD,
∴DE为△CGB的中位线,
∴DE∥AB.
∵EF∥BC,
∴四边形BDEF是平行四边形.
(2)BF=[1/2](AB-AC).
理由如下:
∵四边形BDEF是平行四边形,
∴BF=DE.
∵D、E分别是BC、GC的中点,
∴BF=DE=[1/2]BG.
∵△AGE≌△ACE,
∴AG=AC,
∴BF=[1/2](AB-AG)=[1/2](AB-AC).
点评:
本题考点: 平行四边形的判定与性质;全等三角形的判定与性质.
考点点评: 此题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,三角形中位线定理,题目综合性较强,证明GE=EC,再利用三角形中位线定理证明DE∥AB是解决问题的关键.