设椭圆与直线的交点为A(x1,y1)、B(x2,y2).
联立y=x+m与4x^2+y^2=1得:5x^2+2mx+m^2-1=0.x1+x2=-2m/5,x1x2=(m^2-1)/5.
弦长{AB]=√2√[(x1+x2)^2-4x1x2]=√2√[4m^2/25-4(m^2-1)/5]=(2√2/5)√(5-4m^2)=2√10/5.
m=0,直线方程为:y=x.
设椭圆与直线的交点为A(x1,y1)、B(x2,y2).
联立y=x+m与4x^2+y^2=1得:5x^2+2mx+m^2-1=0.x1+x2=-2m/5,x1x2=(m^2-1)/5.
弦长{AB]=√2√[(x1+x2)^2-4x1x2]=√2√[4m^2/25-4(m^2-1)/5]=(2√2/5)√(5-4m^2)=2√10/5.
m=0,直线方程为:y=x.