解题思路:运用反证法进行求解:
(1)假设结论PB≠PC不成立,PB=PC成立.
(2)从假设出发推出与已知相矛盾.
(3)得到假设不成立,则结论成立.
证明:假设PB≠PC不成立,则PB=PC,∠PBC=∠PCB;
又∵AB=AC,
∴∠ABC=∠ACB;
∴∠ABP=∠ACP;
∴△ABP≌△ACP,
∴∠APB=∠APC;
与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC.
点评:
本题考点: 反证法.
考点点评: 解此题关键要懂得反证法的意义及步骤.
解题思路:运用反证法进行求解:
(1)假设结论PB≠PC不成立,PB=PC成立.
(2)从假设出发推出与已知相矛盾.
(3)得到假设不成立,则结论成立.
证明:假设PB≠PC不成立,则PB=PC,∠PBC=∠PCB;
又∵AB=AC,
∴∠ABC=∠ACB;
∴∠ABP=∠ACP;
∴△ABP≌△ACP,
∴∠APB=∠APC;
与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC.
点评:
本题考点: 反证法.
考点点评: 解此题关键要懂得反证法的意义及步骤.