11.原式=1/8-(3/2)^3=1/8-27/8=13/4.
12.e^x-1>=0,
e^x>=1,
x>=0.
13.f[f(-2)]=f[2^(-2)]=f(1/4)=-1/4+1=3/4.
14.f(x0)>2,化为
{x02=(1/2)^(-1)},或{x0>0,x0^(1/2)>2},
解得x04.
11.原式=1/8-(3/2)^3=1/8-27/8=13/4.
12.e^x-1>=0,
e^x>=1,
x>=0.
13.f[f(-2)]=f[2^(-2)]=f(1/4)=-1/4+1=3/4.
14.f(x0)>2,化为
{x02=(1/2)^(-1)},或{x0>0,x0^(1/2)>2},
解得x04.