数学归纳法的证明题用数学归纳法证明:1 sin x+2 sin 2x+…+n sin nx=sin[(n+1)x]/4s

1个回答

  • 前面步骤省略

    设:1sin(x)+2sin(2x)+…+nsin(nx)=sin[(n+1)x]/[4sin^2(x/2)]-(n+1)cos[(2n+1)x/2]/[2sin(x/2)]

    则需要sin[(n+2)x]/[4sin^2(x/2)]-(n+2)cos[(2n+3)x/2]/[2sin(x/2)]

    =sin[(n+1)x]/[4sin^2(x/2)]-(n+1)cos[(2n+1)x/2]/[2sin(x/2)]+(n+1)sin[(n+1)x]

    则需要sin[(n+2)x]-(n+2)cos[(2n+3)x/2][2sin(x/2)]

    =sin[(n+1)x]-(n+1)cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]

    则需要sin[(n+2)x]-(n+2)cos[(2n+3)x/2][2sin(x/2)]

    =sin[(n+1)x]-(n+2)cos[(2n+1)x/2][2sin(x/2)]+cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]

    则需要sin[(n+2)x]-sin[(n+1)x]+(n+2)cos[(2n+1)x/2][2sin(x/2)]-(n+2)cos[(2n+3)x/2][2sin(x/2)]

    =cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]

    则需要sin[(n+2)x]-sin[(n+1)x]+(n+2)[2sin(x/2)]{cos[(2n+1)x/2]-cos[(2n+3)x/2]}

    =cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]

    则需要2cos[(2n+3)x/2]sin(x/2)+(n+2)[2sin(x/2)][2sin[(n+1)x]sin(x/2)]

    =cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]

    则需要(n+2)[sin[(n+1)x][4sin^2(x/2)]-(n+1)sin[(n+1)x][4sin^2(x/2)]

    ={cos[(2n+1)x/2]-cos[(2n+3)x/2]}[2sin(x/2)]

    则需要(n+2)[sin[(n+1)x][4sin^2(x/2)]-(n+1)sin[(n+1)x][4sin^2(x/2)]

    =2sin[(n+1)x]sin(x/2)[2sin(x/2)]

    则需要(n+2)[sin[(n+1)x][4sin^2(x/2)]-(n+1)sin[(n+1)x][4sin^2(x/2)]

    =sin[(n+1)x][4sin^2(x/2)]

    很明显,上式是左右相等的

    所以问题得证.

    需要用到的三角函数:

    sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2],则sin[(n+2)x]-sin[(n+1)x]=2cos[(2n+3)x/2]sin(x/2)

    cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2],则cos[(2n+1)x/2]-cos[(2n+3)x/2]=2sin[(n+1)x]sin(x/2)