已知函数f(x)=2cosxsin(x+π/6)-sin²x+cos²x,

2个回答

  • 2cosxsin(x+π/6)-sin²x+cos²x

    =2cosx﹙sinxcosπ/6+cosxsinπ/6﹚+cos2x

    =√3cosxsinx+cos²x+cos2x

    =√3sin2x/2+﹙cos2x+1﹚/2+cos2x

    =√3sin2x/2+3cos2x/2+1/2

    =√3(sin2x/2+√3cos2x/2﹚+1/2

    =√3(sin﹙2x+π/3﹚+1/2

    ∵2x+π/3∈[2kπ-π/2,2kπ+π/2],k∈Z时,f(x)递增

    ∴函数f(x)的单调递增区间是[kπ-5π/12,kπ+π/12],k∈Z

    当x∈[-π/12,π/6],2x+π/3∈[π/6,2π/3]

    ∴当2x+π/3=π/2即x=π/12时,f(x)的最大值是√3+1/2;

    当2x+π/3=π/6即x=﹣π/12时,f(x)的最小值是√3/2+1/2.