∵(B+C)/2=π/2-A/2
sin[(B+C)/2]=cos(A/2)
sin^2[(B+C)/2]=cos²A/2=(1+cosA)/2
cos2A=2cos²A-1
∴4[sin^2(B+C)/2]-cos2A=2(1+cosA)-2cos²A+1=7/2
4cos²A-4cosA+1=0
(2cosA-1)²=0,cosA=1/2
A=π/3
∵(B+C)/2=π/2-A/2
sin[(B+C)/2]=cos(A/2)
sin^2[(B+C)/2]=cos²A/2=(1+cosA)/2
cos2A=2cos²A-1
∴4[sin^2(B+C)/2]-cos2A=2(1+cosA)-2cos²A+1=7/2
4cos²A-4cosA+1=0
(2cosA-1)²=0,cosA=1/2
A=π/3