∠BPC =25°
∠DBA=∠A+∠C
BP是三角形ABC的外角角DBA的平分线,
所以∠PBA= (∠A+∠C )/2 =25°+∠C/2
在△ABC中 ∠ABC+∠A +∠C=180°
在△BPC中 ∠BPC+∠PBA+∠ABC+∠PCB=180°
∠BPC+25°+∠C/2+180°-∠A-∠C+∠C/2 =180°
所以∠BPC =25°
∠BPC =25°
∠DBA=∠A+∠C
BP是三角形ABC的外角角DBA的平分线,
所以∠PBA= (∠A+∠C )/2 =25°+∠C/2
在△ABC中 ∠ABC+∠A +∠C=180°
在△BPC中 ∠BPC+∠PBA+∠ABC+∠PCB=180°
∠BPC+25°+∠C/2+180°-∠A-∠C+∠C/2 =180°
所以∠BPC =25°