1.f(x)=ab
=(1+sin2x,sinx-cosx) (1,sinx+cosx)
=(1+sin2x) +(sinx-cosx)(sinx+cosx)
=1+sin2x+sin²x-cos²x
=1+sin2x-cos2x
=1+√2sin(2x-π/4)
所以最大值为1+√2
2.因为f(θ)=8/5=1+√2sin(2θ-45°)
所以√2sin(2θ-45°)=3/5
cos²(π/4-2θ)
=1-sin²(π/4-2θ)
因为√2sin(2θ-π/4)=3/5
所以√2sin(π/4-2θ)=-3/5
原式=1-(3/5√2)²=1-9/50=41/50
打符号累死了
题没错啊