1.f(x)=a·b=2sinx*(sinx+cosx)+m*1=2sin^x+2sinxcosx+m
=1-cos2x+sin2x+m
=sin2x-cos2x+m+1
=√2sin(2x-π/4)+(m+1)
∵sin(2x-π/4)≤1
∴f(x)≤√2+(m+1)
f(x)最大值就是:√2+(m+1)
依题意得:√2+(m+1)=√2
m=-1
2.将m=-1代入f(x),得:
f(x)=√2sin(2x-π/4)
将f(x)的图像向左平移n个单位,得到的g(x)解析式是:
g(x)=√2sin[2(x+n)-π/4]=√2sin(2x+2n-π/4)
依题意:g(x)的图像关于y轴对称,∴g(x)是偶函数,有:
g(x)=g(-x)
而g(-x)=√2sin(-2x+2n-π/4)=-√2sin(2x-2n+π/4)
√2sin(2x+2n-π/4)=-√2sin(2x-2n+π/4)
sin(2x+2n-π/4)+sin(2x-2n+π/4)=0
2sin[(2x+2n-π/4 + 2x-2n+π/4)/2]*cos[(2x+2n-π/4 - 2x+2n-π/4)/2]=0
sin2x*cos(2n-π/4)=0
此式要对任意的x∈R成立,sin2x显然不能恒为0,∴
cos(2n-π/4)=0
2n-π/4=π/2+kπ (k为整数)
n=3π/8 +kπ/2
由n>0,有:
3π/8+kπ/2>0
k>-3/4
∵k为整数,∴k=0,1,2...即,k为大于等于0的整数
kmin=0
∴n(min)=3π/8+0=3π/8