已知向量a=(2sinx,m),向量b=(sinx+cosx,1),函数f(x)=向量a`向量b(x属于R),若f(x)

1个回答

  • 1.f(x)=a·b=2sinx*(sinx+cosx)+m*1=2sin^x+2sinxcosx+m

    =1-cos2x+sin2x+m

    =sin2x-cos2x+m+1

    =√2sin(2x-π/4)+(m+1)

    ∵sin(2x-π/4)≤1

    ∴f(x)≤√2+(m+1)

    f(x)最大值就是:√2+(m+1)

    依题意得:√2+(m+1)=√2

    m=-1

    2.将m=-1代入f(x),得:

    f(x)=√2sin(2x-π/4)

    将f(x)的图像向左平移n个单位,得到的g(x)解析式是:

    g(x)=√2sin[2(x+n)-π/4]=√2sin(2x+2n-π/4)

    依题意:g(x)的图像关于y轴对称,∴g(x)是偶函数,有:

    g(x)=g(-x)

    而g(-x)=√2sin(-2x+2n-π/4)=-√2sin(2x-2n+π/4)

    √2sin(2x+2n-π/4)=-√2sin(2x-2n+π/4)

    sin(2x+2n-π/4)+sin(2x-2n+π/4)=0

    2sin[(2x+2n-π/4 + 2x-2n+π/4)/2]*cos[(2x+2n-π/4 - 2x+2n-π/4)/2]=0

    sin2x*cos(2n-π/4)=0

    此式要对任意的x∈R成立,sin2x显然不能恒为0,∴

    cos(2n-π/4)=0

    2n-π/4=π/2+kπ (k为整数)

    n=3π/8 +kπ/2

    由n>0,有:

    3π/8+kπ/2>0

    k>-3/4

    ∵k为整数,∴k=0,1,2...即,k为大于等于0的整数

    kmin=0

    ∴n(min)=3π/8+0=3π/8