(1)∵EF是△OAB的中位线,
∴EF∥AB,EF= 1/2AB,
而CD∥AB,CD= 1/2AB,
∴EF=CD,∠OEF=∠OCD,∠OFE=∠ODC,
∴△FOE≌△DOC;
(2)∵在Rt△ABC中,AC=根号AB²+BC²= 根号4BC²+BC²= 根号5BC,
∴sin∠OEF=sin∠CAB= BC/AC= 1/根号5= 根号5/5;
(3)∵AE=OE=OC,EF∥CD,
∴△AEG∽△ACD,
∴ EG/CD= AE/AC= 1/3,即EG= 1/3CD,
同理FH= 1/3CD,
∴ (AB+CD)/GH= (2CD+CD)/(CD/3+CD+CD/3)= 9/5.