已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题

1个回答

  • 解题思路:本题中要证△ABC≌△DEF,已知的条件有一组对应边AB=DE(AD=BE),一组对应角∠A=∠FDE.要想证得全等,根据全等三角形的判定,缺少的条件是一组对应角(AAS或ASA),或者是一组对应边AC=EF(SAS).只要有这两种情况就能证得三角形全等.

    是假命题.以下任一方法均可:①添加条件:AC=DF.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE.在△ABC和△DEF中,AB=DE,∠A=∠FDE,AC=DF,∴△ABC≌△DEF(SAS);②添加条件:∠CBA=∠E.证明:∵AD=BE,∴AD+BD=BE...

    点评:

    本题考点: 全等三角形的判定.

    考点点评: 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.

    注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.