f(x)=2sinxcosx+2cos²x
=sin2x+cos2x+1
=√2*[sin2x*(√2/2)+cos2x*(√2/2)]+1
=√2*[sin2x*cos(π/4)+cos2x*sin(π/4)]+1
=√2*sin(2x+π/4)+1
f(x)=2sinxcosx+2cos²x
=sin2x+cos2x+1
=√2*[sin2x*(√2/2)+cos2x*(√2/2)]+1
=√2*[sin2x*cos(π/4)+cos2x*sin(π/4)]+1
=√2*sin(2x+π/4)+1