①取x 1=x 2=0,代入f(x 1+x 2)≥f(x 1)+f(x 2),
得f(0)≥f(0)+f(0),化简可得f(0)≤0
又由f(0)≥0,得f(0)=0
设0≤x 1<x 2≤1,则0<x 2-x 1<1,
所以f(x 2)=f(x 2-x 1+x 1)≥f(x 2-x 1)+f(x 1)≥f(x 1)
故有f(x 1)≤f(x 2),故函数f(x)为定义在[0,1]上的增函数;
②显然g(x)=2 x-1在[0,1]上满足(1)g(x)>0;(2)g(1)=1;(3)若x 1≥0,x 2≥0,且x 1+x 2≤1,则有
g(x 1+x 2)-[g(x 1)+g(x 2)]= 2 x 1 + x 2 -1-[( 2 x 1 -1)+( 2 x 2 -1)]=( 2 x 2 -1)( 2 x 1 -1)≥0
故g(x)=2 x-1满足条件(1)、(2)、(3),
所以g(x)=2 x-1为友谊函数.