(1)
f(x)=(a×2^x-1)/(1+2^x)
∵f(-x)=-f(x)
即[a×2^(-x)-1]/[1+2^(-x)]=-(a×2^x-1)/(1+2^x)
(a-2^x)/(2^x+1)=-(a×2^x-1)/(1+2^x)
∴a-2^x=-a×2^x+1
∴a(1+2^x)=1+2^x
∴a=1
(2)
f(x)=(2^x-1)/(2^x+1)
=[(2^x+1)-2]/(2^x+1)
=1-2/(2^x+1)
∵2^x>0
∴2^x+1>1
∴0
(1)
f(x)=(a×2^x-1)/(1+2^x)
∵f(-x)=-f(x)
即[a×2^(-x)-1]/[1+2^(-x)]=-(a×2^x-1)/(1+2^x)
(a-2^x)/(2^x+1)=-(a×2^x-1)/(1+2^x)
∴a-2^x=-a×2^x+1
∴a(1+2^x)=1+2^x
∴a=1
(2)
f(x)=(2^x-1)/(2^x+1)
=[(2^x+1)-2]/(2^x+1)
=1-2/(2^x+1)
∵2^x>0
∴2^x+1>1
∴0