因为
(a+b)(a-b)=a²-b²
(a²-b²)(a²+b²)=a^4-b^4
(a^4+b^4)(a^4-b^4)=a^8-b^8
所以
[1/(a-b)]+[1/(a+b)]+[2a/(a^2+b^2)]+[4a^3/(a^4+b^4)]
=[2a/(a^2-b^2)]+[2a/(a^2+b^2)]+[4a^3/(a^4+b^4)]
=[4a^3/(a^4-b^4)]+[4a^3/(a^4+b^4)]
=8a^7/(a^8-b^8)
因为
(a+b)(a-b)=a²-b²
(a²-b²)(a²+b²)=a^4-b^4
(a^4+b^4)(a^4-b^4)=a^8-b^8
所以
[1/(a-b)]+[1/(a+b)]+[2a/(a^2+b^2)]+[4a^3/(a^4+b^4)]
=[2a/(a^2-b^2)]+[2a/(a^2+b^2)]+[4a^3/(a^4+b^4)]
=[4a^3/(a^4-b^4)]+[4a^3/(a^4+b^4)]
=8a^7/(a^8-b^8)