求证:(1)tan(x/2+π/4)+tan(x/2 - π/4)=2tan x(2)(1+sin 2φ)/(cos φ

1个回答

  • (1)tan(x/2+π/4)+tan(x/2 - π/4)

    =[tanx/2+tanπ/4]/[1-tanx/2*tanπ/4]+[tanx/2-tanπ/4]/[1+tanx/2*tanπ/4]

    =[tanx/2+1]/[1-tanx/2]+[tanx/2-1]/[1+tanx/2]

    =2[tan^2x/2+1]/[1-tan^2x/2]=2tan x

    (2)(1+sin 2φ)/(cos φ+sin φ)=[cos^2 φ+sin^2 φ+2cos φsin φ]/(cos φ+sin φ)

    =(cos φ+sin φ)^2/(cos φ+sin φ)=(cos φ+sin φ)

    sin(α+β)=1/2,sin(α - β)=1/3 :

    sin(α+β)=sinacosβ+cosasinβ=1/2,

    sin(α - β)=sinacosβ-cosasinβ=1/3 :

    3[sinacosβ+cosasinβ]=2[sinacosβ-cosasinβ]

    sin αcos β=5cos αsin β

    同除5cos αcos β得

    tan α=5tan β