sin2a=2tana/[1+(tana)^2]
=2*1/[1+1]
=1
(cos2a)^2=1-(sin2a)^2
(cos2a)^2=1-1
(cos2a)^2=0
cos2a=0
3sinB=sin(2a+B)
3sinB=sin2acosB+cos2asinB
3sinB/cosB=sin2acosB/cosB+cos2asinB/cosB
3tanB=sin2a+cos2atanB
3tanB=1+0*tanB
3tanB=1
tanB=1/3
sin2a=2tana/[1+(tana)^2]
=2*1/[1+1]
=1
(cos2a)^2=1-(sin2a)^2
(cos2a)^2=1-1
(cos2a)^2=0
cos2a=0
3sinB=sin(2a+B)
3sinB=sin2acosB+cos2asinB
3sinB/cosB=sin2acosB/cosB+cos2asinB/cosB
3tanB=sin2a+cos2atanB
3tanB=1+0*tanB
3tanB=1
tanB=1/3