此题关键:一是链导法则,二是化简.
注:根号1+x平方=(1+x^2)^(1/2)
y'=1/[x+(1+x^2)^(1/2)]*[1+(1/2)*1/(1+x^2)^(1/2)*2x]
=[1+x/(1+x^2)^(1/2)]/[x+(1+x^2)^(1/2)]
分子分母同乘(1+x^2)^(1/2)得:
y'=[(1+x^2)^(1/2)+x]/{[x+(1+x^2)^(1/2)]*(1+x^2)^(1/2)}
约分得:y'=1/(1+x^2)^(1/2)
此题关键:一是链导法则,二是化简.
注:根号1+x平方=(1+x^2)^(1/2)
y'=1/[x+(1+x^2)^(1/2)]*[1+(1/2)*1/(1+x^2)^(1/2)*2x]
=[1+x/(1+x^2)^(1/2)]/[x+(1+x^2)^(1/2)]
分子分母同乘(1+x^2)^(1/2)得:
y'=[(1+x^2)^(1/2)+x]/{[x+(1+x^2)^(1/2)]*(1+x^2)^(1/2)}
约分得:y'=1/(1+x^2)^(1/2)