解题思路:(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DEG,从而得出FG=EG,即BD平分EF.
(2)结论仍然成立,同样可以证明得到.
(1)证明:∵DE⊥AC,BF⊥AC,
∴∠DEG=∠BFE=90°.
∵AE=CF,AE+EF=CF+EF.
即AF=CE.
在Rt△ABF和Rt△CDE中,
AB=CD
AF=CE
∴Rt△ABF≌Rt△CDE(HL),
∴BF=DE.
在△BFG和△DEG中,
∠BFG=∠DEG
∠BGF=∠DGE
BF=DE
∴△BFG≌△DEG(AAS),
∴FG=EG,即BD平分EF.
(2)FG=EG,即BD平分EF的结论依然成立.
理由:如图2,连接BE、FD.
∵AE=CF,FE=EF,
∴AF=CE,
∵DE垂直于AC,BF垂直于AC,
∴∠AFB=∠CED,BF∥DE,
∴在Rt△ABF和Rt△CDE中
AF=CE
AB=CD,
∴△ABF≌△CDE(HL),
∴BF=DE,
∴四边形BEDF是平行四边形,
∴GE=GF,即:BD平分EF,
即结论依然成立.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.