以知:抛物线y=x的平方-2x-m(m大于0)与y轴交与C点,C点关于抛物线对称轴的对称点为C’点.

1个回答

  • (1)对称轴x=-b/2=2/2=1,c点为抛物线与y交点,即x=0,所以C(0,-m),C'(2,-m).

    (2)设P(x,Y)则Y=x^2-2x-m,Q(1,p)

    若x>=2 则只有PC'//QC,由图可知若PC//QC',则PC>C'Q所以PC不能平行于QC',则p=Y

    斜率相等:(x^2-2x-m-(-m))/(x-2)=(x^2-2x-m-(-m))/(1-0),化简为:(x^2-2x)/(x-2)=x^2-2x,P不能与C'重合,所以x不等于2,1/(x-2)=1 => x=3.得到

    P(3,3-m),Q(1,3-m)

    由于抛物线关于x=1对称,当x