设x²-mx+2m-1=0的两个实数根为x1,x2,则
{△=b²-4ac=m²-4(2m-1)≥0;x1+x2=m;x1x2=2m-1};m∈(-∞,4-2√3]∪[4+2√3,+∞),x²1+x²2=(x1+x2)²-2x1x2=m²-2(2m-1)=m²-4m+2=7,m=5或-1,-1(-∞,4-2√3],5不属于(-∞,4-2√3]∪[4+2√3,+∞),∴m=-1.
设x²-mx+2m-1=0的两个实数根为x1,x2,则
{△=b²-4ac=m²-4(2m-1)≥0;x1+x2=m;x1x2=2m-1};m∈(-∞,4-2√3]∪[4+2√3,+∞),x²1+x²2=(x1+x2)²-2x1x2=m²-2(2m-1)=m²-4m+2=7,m=5或-1,-1(-∞,4-2√3],5不属于(-∞,4-2√3]∪[4+2√3,+∞),∴m=-1.