数列{an}中,a1=-13,a(n+1)=(2an +3)/an,求{an}的通项公式.注:等号左边的括号表示角标

3个回答

  • a(n+1)=(2an+3)/an

    a(n+1)+1=(3an+3)/an=3(an +1)/an (1)

    a(n+1) -3=(2an+3-3an)/an=(-an +3)/an=-(an -3)/an (2)

    (1)/(2)

    [a(n+1)+1]/[a(n+1)-3]=(-3)(an +1)/(an -3)

    {[a(n+1)+1]/a(n+1)-3}/[(an +1)/(an-3)]=-3,为定值.

    (a1+1)/(a1-3)=(-13+1)/(-13-3)=3/4

    数列{(an +1)/(an -3)}是以3/4为首项,-3为公比的等比数列.

    (an +1)/(an -3)=(3/4)×(-3)^(n-1)=-(-3)ⁿ/4

    -(-3)ⁿ×(an-3)=4an+4

    an=3 -16/[(-3)ⁿ+4]

    n=1时,an=3- 16/(-3+4)=3-16=-13同样满足.

    数列{an}的通项公式为an=3 -16/[(-3)ⁿ+4].