关于高斯公式的求曲面积分∮∮xzdydz+yzdzdx+(1/2)*z^2*√(x^2+y^2)dxdy,其中∑为z=√
2个回答
因为你化成三重积分后,z的积分区域应该是从r到1,不是0到1
这样求出来就是19π/30
相关问题
高斯公式求曲面积分...求∫∫(xdydz+z^2dxdy)/(x^2+y^2+z^2),
关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥
高斯公式提问高斯公式的 ∮x3dydz+y3dzdx+z3 dxdy,其中曲面为球面x2+y2+z2=a2的内侧,求偏导
计算曲面积分I=∫∫xzdydz+2zydzdx+3xydxdy,其中∑为曲面z=1-x2-y24(0≤z≤1)的上侧.
计算曲面积分ff(xdydz+z平方dxdy)/x2+y2+z2,其中积分区域为曲面x2+y2=a2与平面z=a及z=-
求曲线积分I=∫∫∑(z-1)dxdy+x2ydydz+(x2+1)ydzdx,其中∑为曲面线z=1-x2-y2(0≤z
曲面积分 ∫∫(y^2-x)dydz+(z^2-y)dzdx+(x^2-z)dxdy,∑为Z=1-x^2-y^2位于侧面
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.
计算曲面积分∫∫D(e^z)/√(x^2+y^2)dxdy,其中D为由z=√(x^2+y^2),x^2+y^2=4及z=
求积分∫∫(x^2+zx)dydz+(y^2+xy)dzdx+(z^2+yz)dxdy,其中积分沿曲面外侧,x^2+y^