原式
=(a2-b2+2b-1)/(a2-b2+a+b)
=(a²-(b²-2b+1))/(a²-b²+a+b)
=(a²-(b-1)²)/((a-b)(a+b)+a+b)
=[a-(b-1)][a+(b-1)]/[(a-b+1)(a+b)]
=[a-b+1)[a+b-1]/[(a-b+1)(a+b)]
=(a+b-1)/(a+b)
=(2009-1)/2009
=2008/2009
原式
=(a2-b2+2b-1)/(a2-b2+a+b)
=(a²-(b²-2b+1))/(a²-b²+a+b)
=(a²-(b-1)²)/((a-b)(a+b)+a+b)
=[a-(b-1)][a+(b-1)]/[(a-b+1)(a+b)]
=[a-b+1)[a+b-1]/[(a-b+1)(a+b)]
=(a+b-1)/(a+b)
=(2009-1)/2009
=2008/2009