设F(x)=f (x)g(x),当x<0时,
∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.
∴F(x)在R上为增函数.
∵F(-x)=f (-x)g (-x)=-f (x)•g (x).=-F(x).
故F(x)为(-∞,0)∪(0,+∞)上的奇函数.
∴F(x)在R+上亦为增函数.
已知g(-3)=0,必有F(-3)=F(3)=0.
∴F(x)>0的解集为x∈(-3,3)
因为乘法和除法对正负的影响相同
∴f(x)/g(x)>0的解集为x∈(-3,3)
这是我在静心思考后得出的结论,
如果不能请追问,我会尽全力帮您解决的~
如果您有所不满愿意,请谅解~