解
x-1=1/2(y+1)=1/3(z-2)
∴2(x-1)=y+1,3(x-1)=z-2
∴y=2x-3,z=3x-1
∴x²+y²+z²
=x²+(2x-3)²+(3x-1)²
=x²+4x²-12x+9+9x²-6x+1
=14x²-18x+10
=14(x²-9/7x)+10
=14(x²-9/7x+81/196)-81/14+10
=14(x-9/14)²+59/14
∵x>0,
∴当x=9/14时,取得最小值为59/14
解
x-1=1/2(y+1)=1/3(z-2)
∴2(x-1)=y+1,3(x-1)=z-2
∴y=2x-3,z=3x-1
∴x²+y²+z²
=x²+(2x-3)²+(3x-1)²
=x²+4x²-12x+9+9x²-6x+1
=14x²-18x+10
=14(x²-9/7x)+10
=14(x²-9/7x+81/196)-81/14+10
=14(x-9/14)²+59/14
∵x>0,
∴当x=9/14时,取得最小值为59/14