(1)
a(n+1)/2^(n+1)=-1/2*an/2^n+1/2
a(n+1)/2^(n+1)-1/3=-1/2[an/2^n-1/3]
所以 {an/2^n-1/3}成等比数列,首项为1/6,公比为-1/2
an=1/3[2^n-(-1)^(n-1)]
bn=2^n-(-1)^(n-1)
(2)
若存在,设为b(k-1),bk,b(k+1)成等差数列,当k为奇数
有 b(k-1)=2^(k-1)+1,bk=2^k-1,b(k+1)=2^(k+1)+1,
2^(k+1)-2=2^(2k)+2^(k-1)+2^(k+1)+1
2^(2k)-2^(k-1)+3=0
k=1而k应该大于等于2,则这样的k不存在,即没有这样连续的三项满足题意.