在三角形ABC中,a+c=2b,A-C=pi/3.

1个回答

  • (1)

    A - C = pi/3

    A + C = pi - B

    所以 :

    2A = 4pi/3 - B

    即:A = 2pi/3 - B

    C = pi - A - B

    = pi/3 - B/2

    (2)

    由正弦定理及“a+c=2b”,得:

    sinA + sinC = 2sinB

    sinA + sinC = 2sin((A+C)/2)cos((A-C)/2)

    = 2cos(pi/2 - (A+C)/2) cos(pi/6)

    = 2cos(B/2) * √3/2

    = √3cos(B/2)

    2sinB = 4sin(B/2)cos(B/2)

    所以:

    √3cos(B/2) = 4sin(B/2)cos(B/2)

    所以:

    cos(B/2) = 0(B=pi,故舍去)

    或sin(B/2) = √3/4

    因此:

    cos(B/2) = √13/4

    sinB = 2sin(B/2)cos(B/2) = √39/8