法一:
证明 不妨设a≥b≥c>0,则
(a^(2a)*b^(2b)*c^(2c))/(a^(b+c)*b^(c+a)*c^(a+b))
=(a^a*b^b*c^c)/(a^((b+c)/2)*b^((c+a)/2)*c^((a+b)/2))
=(a^((a-b)/2+(a-c)/2))*(b^((b-c)/2+(b-a)/2))*(c^((c-a)/2+(c-b)/2))
=((a/b)^((a-b)/2))*((a/c)^((a-c)/2))*((b/c)^((b-c)/2))≥1
故得
a^(2a)b^(2b)c^2(2c)≥a^(b+c)b^(c+a)c^(a+b)
法二:
2alna+2blnb+2clnc>=(b+c)lna+(a+c )lnb+(a+b)lnc
假设a>b>c,则lna>lnb>lnc
根据排序不等式
alna+blnb+clnc>=blna+clnb+alnc
alna+blnb+clnc>=clna+alnb+blnc
两式相加,即得证
明教为您解答,
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!