设P(x,y),
∵两定点A(-1,0),B(2,0),动点P满足
|PA|
|PB| =
1
2 ,
∴
(x+1 ) 2 + y 2
(x-2 ) 2 + y 2 =
1
2 ,
整理,得x 2+y 2+4x=0,
所以P点的轨迹方程为x 2+y 2+4x=0.
故答案为:x 2+y 2+4x=0.
设P(x,y),
∵两定点A(-1,0),B(2,0),动点P满足
|PA|
|PB| =
1
2 ,
∴
(x+1 ) 2 + y 2
(x-2 ) 2 + y 2 =
1
2 ,
整理,得x 2+y 2+4x=0,
所以P点的轨迹方程为x 2+y 2+4x=0.
故答案为:x 2+y 2+4x=0.