因AB、AC、AD两两垂直,则:AB、AC、AD正好是球内接长方体的同一个顶点上的三条棱,设:AB=x,AC=y,AD=z,则:
x²+y²+z²=(2R)²=16 ----------------------------【长方体的体对角线恰为球的直径】
本题所求的就是S=(1/2)(xy+yz+zx)的最值问题.
因:
x²+y²≥2xy
y²+z²≥2yz
z²+x²≥2xz
上述三个式子相加,得:
2(x²+y²+z²)≥2(xy+yz+xz)
则:S=(1/2)(xy+yz+zx)≤(1/2)(x²+y²+z²)=8
从而,三角形ABC、ABD、ACD的面积之和的最大值是8