解题思路:由三角形ABC为等边三角形得到AC=BC,且∠A=∠ACB=60°,再有AE=CD,利用SAS得到三角形AEC与三角形CDB全等,利用全等三角形的对应角相等得到∠ACE=∠CBD,再有∠ACB=∠ACE+∠ECB=60°,等量代换及利用外角性质得到∠EPB=60°,进而确定出∠PEF为30°,在直角三角形PEF中,利用30度角所对的直角边等于斜边的一半即可得证.
证明:∵△ABC为等边三角形,
∴AC=BC,∠A=∠ACB=60°,
在△AEC和△CDB中,
AE=CD
∠A=∠ACB=60°
AC=CB,
∴△AEC≌△CDB(SAS),
∴∠ACE=∠CBD,
∵∠ACE+∠ECB=60°,
∴∠CBD+∠ECB=60°,
∵∠EPB为△PBC的外角,
∴∠EPB=60°,
∴在Rt△EFP中,∠PEF=30°,
则PF=[1/2]PE.
点评:
本题考点: 全等三角形的判定与性质;等边三角形的性质;含30度角的直角三角形.
考点点评: 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.