设y=ax^3+bx^2+cx=0, a0,
α、Υ、β为方程的三个根:x1, x2, x3
x1+x2+x3=-b/a
y'=3ax^2+2bx+c
由题意有:y'(x1)=y'(x2)
3ax1^2+2bx1+c=3ax2^2+2bx2+c
3a(x1^2-x2^2)+2b(x1-x2)=0
3a(x1+x2)+2b=0
x1+x2=-2b/(3a)
x3=-b/a-(x1+x2)=-b/a+2b/(3a)=-b/(3a)=(x1+x2)/2
因此x1, x3, x2成等差数列.
设y=ax^3+bx^2+cx=0, a0,
α、Υ、β为方程的三个根:x1, x2, x3
x1+x2+x3=-b/a
y'=3ax^2+2bx+c
由题意有:y'(x1)=y'(x2)
3ax1^2+2bx1+c=3ax2^2+2bx2+c
3a(x1^2-x2^2)+2b(x1-x2)=0
3a(x1+x2)+2b=0
x1+x2=-2b/(3a)
x3=-b/a-(x1+x2)=-b/a+2b/(3a)=-b/(3a)=(x1+x2)/2
因此x1, x3, x2成等差数列.