2√(2/3)=√(2²×2/3)=√(8/3)=√[2+2/(2²-1)]
3√(3/8)=√(3²×3/8)=√(27/8)]=√[3+3/(3²-1)]
4√(4/15)=√(4²×4/15)=√(64/15)=√[4+4/(4²-1)]
……
n√[n/(n²-1)]=√[n²×n/(n²-1)]
=√{[n(n²-1)+n]/(n²-1)}
=√{[n(n²-1)/(n²-1)+n/(n²-1)]
=√[n+n/(n²-1)]
规律为:
n√[n/(n²-1)]=√[n+n/(n²-1)] (n≥2,n为自然数)