1/2×3+1/3*4+1/4*5+.+1/19*20=?
8个回答
答案是9/20
原理是1/[n*(n+1)]=1/n-1/(n+1)
所以原式=1/2-1/3+1/3-1/4+...+1/19-1/20
=1/2-1/20
=9/20
相关问题
简算1/(2×3)+1/(3×4)+1/(4×5)+……+1/(18×19)+1/(19×20)
1/1×2×3×4+1/2×3×4×5+1/3×4×5×6+……+1/17×18×19×20
1×2+2×3+3×4+4×5+5×6+……+19×20
巧算:1/1×2+1/2×3+1/3×4+.+1/19×20+1/20×21
4/1×3+4/3×5+4/7×9+.+4/19×20
1×2×3×4+1=25=5²,2×3×4×5+1=121=11²,3×4×5×6+1=361=19
计算:1×2²+2×3²+3×4²+...+18×19²+19×20²
1/2*1/3+1/3*1/4+1/4*1/5.+1/18*1/19+1/19*1/20
1/1*2*3*4+1/2*3*4*5+1/3*4*5*6+-----+1/17*18*19*20
[1/1×2×3×4+12×3×4×5+13×4×5×6+…+117×18×19×20]=( )