f(n)-1=1/2+1/3+...+1/n
f(1)+f(2)+...+f(n-1)=1+(1+1/2)+(1+1/2+1/3)+...+[1+1/2+1/3+...1/(n-1)]
=(n-1) + (n-2)/2 + (n-3)/3 +...+ 2/(n-2)+1/(n-1)
=1 + [(n-2)/2+1] + [(n-3)/3+1] + ...+ [2/(n-2)+1] + [1/(n-1)+1]
=1 + n/2 + n/3 + ...+ n/(n-2)+n/(n-1)
=n[1/n + 1/2 + 1/3 + ...+ 1/(n-2)+1/(n-1)]
=n[f(n)-1]
所以:g(n)=n[f(n)-1]/[f(n)-1]=n