已知集合P={-2≤x≤5},Q={x|k+1≤x≤2k-1},求P∩Q等于空集时,实数k的取值范围.
2个回答
由于P∩Q等于空集
所以
1.Q=空集
则k+1>2k-1得k<2
2.Q≠空集
①2k-1<-2得k<-½
②k+1>5得k>4
综上所述
k<2或k>4
O(∩_∩)
相关问题
已知集合P={X∣2≤X≤5},Q={X∣K+1≤X≤2K-1},求P∩Q=空集是,实数K的取值范围
已知集合P={-2≤x≤5},非空集合Q={x|k+1≤x≤2k-1},且Q包含于P,求实数K的取值范围
已知集合P={x|-2小于等于x小于等于5},Q={x|k+1小于等于x小于等于2k-1},求P交Q=空集时,实数k的取
已知集合P={x|-2≤x≤5},Q={x|x≤k+1或x≥2k-1} ,P∪Q=R
已知集合P={x|4《x〈5} d={x|k+1〈x《2k-1},当p交d不等于空集时,求实数k的取值范围
已知集合P={(x,y)|y≥k,x∈R},Q={(x,y)|y=ax+1},且P∩Q=Q.那么k的取值范围是 ____
p={(x,y)|y=k},Q={(x,y)|y=2^x-1,x∈R}若集合P∩Q只有一个子集,则实数k的取值范围
集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},且a∈P,b∈Q,
集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},且a∈P,b∈Q,
集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},且a∈P,b∈Q,