由cosB=-1/5可得,B>90,sinB=根号=(1-(cosB)^2)=根号(1-(-1/5)^2)=2/5(根号6)
又sinA=1/3,cosA=根号=(1-(sinA)^2)=根号(1-(1/3)^2)=2/3(根号2)
所以:
sin(A+B)=sinAcosB+cosAsinB
=1/3*(-1/5)+(2/3(根号2))*(2/5(根号6))
=-1/15+8/15(根号3)
=1/15(8(根号3)-1)
cos(A-B)=cosAcosB+sinAsinB
=2/3(根号2)*((-1/5)+1/3*2/5(根号6)
=2/15(根号6-根号)