求于圆C1:(x+1)^2+y^2=1相外切且与圆C2:(x-1)^2+y^2=9相内切的动圆圆心P的轨迹方
1个回答
设动圆半径为r,
则|PC1|=1+r,|PC2|=3-r,
所以|PC1|+|PC2|=4,
动圆圆心P的轨迹是以C1,C2为焦点椭圆,
2a=4,2c=2,方程为y^2/4+y^2/3=1.
相关问题
已知圆C1(x+1)^2+y^2=1和圆C2(x-1)^2+y^2=9,求与圆C1外切而内切于圆C2的动圆圆心P的轨迹方
动圆与圆O:x^2+y^2=1相外切,与圆c:x^2+y^2-8x-20=0相内切.则动圆圆心的轨迹为?
已知动圆与圆c1(x+5)^2+y^2=49与圆c2(x-5)^2+y^2=1都相外切求动圆圆心p的轨迹
已知动圆与⊙C1:(x+3)2+y2=9外切,且与⊙C2:(x-3)2+y2=1内切,求动圆圆心M的轨迹方程.
已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹
动圆M和圆C1:(x+1)2+y2=36内切,圆C2:(x-1)2+y2=4外切,求动圆圆心M的轨迹方程
已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x-3)2+y2=1内切,则动圆圆心M的轨迹方程是_____
已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x-3)2+y2=1内切,则动圆圆心M的轨迹方程是x24-y
若动圆与圆C1:(X-2)^2+Y^2=1外切,且与直线X=1相切,求动圆圆心轨迹方程
已知定圆C1:(X—3)^+Y^=1,C2:(X+3)^+Y^=9,动圆C与C1,C2相内切,则动圆圆心轨迹方程为?