a=BC=√[(m+4)^2+(m-4)^2]=√(2m^2+32)
b=AC=√1^2+1^2)=√2
c=AB=[(m+4-1)^2+(m-4-1)^2]=√(2m^2-4m+34)
cosC=(a^2+b^2-c^2)/2ab=-3/5
(2m^2+32+2-2m^2+4m-34)/2√2*√(2m^2+32)=-3/5
-20m=3√2*√(2m^2+32)
右边大于0
所以m
a=BC=√[(m+4)^2+(m-4)^2]=√(2m^2+32)
b=AC=√1^2+1^2)=√2
c=AB=[(m+4-1)^2+(m-4-1)^2]=√(2m^2-4m+34)
cosC=(a^2+b^2-c^2)/2ab=-3/5
(2m^2+32+2-2m^2+4m-34)/2√2*√(2m^2+32)=-3/5
-20m=3√2*√(2m^2+32)
右边大于0
所以m