第一个问题:
∫[x/√(x^2+x+1)]dx
=(1/2)∫[(2x+1-1)/(x^2+x+1)]dx
=(1/2)∫[(2x+1)/(x^2+x+1)]dx-(1/2)∫[1/(x^2+x+1)]dx
=(1/2)∫[1/(x^2+x+1)]d(x^2+x+1)-(1/2)∫{1/[(x+1/2)^2+3/4]}dx
=(1/2)ln(x^2+x+1)-2∫{1/[(2x+1)^2+3]}dx
=(1/2)ln(x^2+x+1)-∫{1/[(2x+1)^2+3]}d(2x+1)
=(1/2)ln(x^2+x+1)-(1/√3)∫{1/[(1/3)(2x+1)^2+1]}d[(2x+1)/√3]
=(1/2)ln(x^2+x+1)-(√3/3)arctan[(2x+1)/√3]+C
第二个问题:
∵∫[(x-6)/(x^2-6x+8)]dx
=∫{(2x-8-x+2)/[(x-2)(x-4)]}dx
=2∫[1/(x-2)]dx-∫[1/(x-4)]dx
=2ln|x-2|-ln|x-4|+C
∴∫(上限为1,下限为0)[(x-6)/(x^2-6x+8)]dx
=(2ln|x-2|-ln|x-4|)|(上限为1,下限为0)
=2ln|1-2|-ln|1-4|-(2ln|0-2|-ln|0-4|)
=-ln3-2ln2+ln4
=-ln3
第三个问题:
∵∫[(x^3-5x-8)/(x^2-x-6)]dx
=∫[(x^3-x^2-6x+x^2-x-6+2x-2)/(x^2-x-6)]dx
=∫xdx+∫dx+2∫{(x-1)/[(x-3)(x+2)]}dx
=(1/2)x^2+x+(2/5)∫{(2x+4+3x-9)/[(x-3)(x+2)]}dx
=(1/2)x^2+x+(4/5)∫[1/(x-3)]dx+(6/5)∫[1/(x+2)]dx
=(1/2)x^2+x+(4/5)ln|x-3|+(6/5)ln|x+2|+C
∴∫(上限为1,下限为0)[(x^3-5x-8)/(x^2-x-6)]dx
=[(1/2)x^2+x+(4/5)ln|x-3|+(6/5)ln|x+2|]|(上限为1,下限为0)
=1/2+1+(4/5)ln|1-3|+(6/5)ln|1+2|
-[(4/5)ln|0-3|+(6/5)ln|0+2|]
=3/2+(4/5)ln2+(6/5)ln3-(4/5)ln3-(6/5)ln2
=3/2+(2/5)ln3-(2/5)ln2