解题思路:根据条件可以得出△ADF≌△BDC,△AEG≌△CEB,就可以得出AF=BC,∠FAB=∠ABC,AG=CB,∠GAC=∠ACB,就可以得出AF=AG,再由∠ABC+∠ACB+∠BAC=180°,就可以得出F,A,G三点在一条直线上.
AF=AG,F,A,G三点在一条直线上.
理由:∵点D点E分别是AB,AC边上的中点,
∴AD=BD,AE=CE.
在△ADF和△BDC中
AD=BD
∠ADF=∠BDF
DF=DC,
∴△ADF≌△BDC(SAS),
∴AF=BC,∠FAB=∠ABC.
在△AEG和△CEB中
AE=CE
∠AEG=∠CEB
EG=EB,
∴△AEG≌△CEB(SAS),
∴AG=CB,∠GAC=∠ACB,
∴AF=AG.
∵∠ABC+∠ACB+∠BAC=180°,
∴∠FAB+∠BAC+∠GAC=180°.
∴F,A,G三点在一条直线上.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了三角形的中线的性质的运用,三角形内角和定理的运用,全等三角形的判定及性质的运用,解答时证明三角形的全等是关键.