解题思路:(1)先求f(0)=0,再取y=-x,则f(-x)=-f(x)对任意x∈R恒成立,故可得函数为奇函数;
(2)先判断函数在(-∞,+∞)上是减函数,再求f(-3)=-f(3)=6,从而可求函数的最大值;
(3)利用函数为奇函数,可整理得f(ax2-2x)<f(ax-2),利用f(x)在(-∞,+∞)上是减函数,可得ax2-2x>ax-2,故问题转化为解不等式.
(1)取x=y=0,则f(0+0)=2f(0),∴f(0)=0…1′
取y=-x,则f(x-x)=f(x)+f(-x)∴f(-x)=-f(x)对任意x∈R恒成立∴f(x)为奇函数.…3′
(2)任取x1,x2∈(-∞,+∞)且x1<x2,则x2-x1>0,∴f(x2)+f(-x1)=f(x2-x1)<0,…4′
∴f(x2)<-f(-x1),
又f(x)为奇函数∴f(x1)>f(x2)
∴f(x)在(-∞,+∞)上是减函数.∴对任意x∈[-3,3],恒有f(x)≤f(-3)…6′
而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-2×3=-6,
∴f(-3)=-f(3)=6,∴f(x)在[-3,3]上的最大值为6…8′
(3)∵f(x)为奇函数,∴整理原式得 f(ax2)+f(-2x)<f(ax)+f(-2),
进一步得f(ax2-2x)<f(ax-2),
而f(x)在(-∞,+∞)上是减函数,
∴ax2-2x>ax-2…10′∴(ax-2)(x-1)>0.
∴当a=0时,x∈(-∞,1)
当a=2时,x∈{x|x≠1且x∈R}
当a<0时,x∈{x|
2
a<x<1}
当0<a<2时,x∈{x|x>
2
a或x<1}
当a>2时,x∈{x|x<
2
a或x>1}…12′
点评:
本题考点: 函数奇偶性的判断;函数单调性的性质;函数的最值及其几何意义.
考点点评: 本题考查抽象函数的性质,赋值法事常用方法,同时借助于函数的单调性,抽象函数的不等式问题可以转化为具体函数求解.