若一个正整数能表示为两个连续偶数的平方差,那么这个正整数为“神秘数”.如4=22-02,12=42-22,20=62-4

1个回答

  • 解题思路:(1)根据题意可以推出28和76是神秘数;

    (2)运用平方差公式即可推出.

    (1)是,∵28=82-62,76=202-182

    (2)是,∵(2k+2)2-(2k)2=8k+4=4(2k+1),

    ∴由这两个连续偶数构成的神秘数是4的倍数.

    点评:

    本题考点: 平方差公式.

    考点点评: 本题考查了平方差公式,读懂题目信息并熟练掌握平方差公式是解题的关键.