多元线性回归,主成分回归和偏最小二乘回归的联系与区别

2个回答

  • 做多元线性回归分析的时候,有可能存在多重共线性的情况,为了消除多重共线性对回归模型的影响,通常可以采用主成分回归和偏最小二乘法来提高估计量的稳定性.主成分回归是对数据做一个正交旋转变换,变换后的变量都是正交的.(有时候为了去除量纲的影响,会先做中心化处理).偏最小二乘回归相当于包含了主成分分析、典型相关分析的思想,分别从自变量与因变量中提取成分T,U(偏最小二乘因子),保证T,U能尽可能多的提取所在变量组的变异信息,同时还得保证两者之间的相关性最大.偏最小二乘回归较主成分回归的优点在于,偏最小二乘回归可以较好的解决样本个数少于变量个数的问题,并且除了考虑自变量矩阵外,还考虑了响应矩阵.