在数列{an}中,a1=3,a(n+1)=(3an+4)/(an+6),求an.
【解】a(n+1)=(3an+4)/(an+6),
a(n+1)-1=(3an+4)/(an+6)-1,
a(n+1)-1=(2an-2)/(an+6),
取倒数得:
1/[ a(n+1)-1]= (an+6)/(2an-2),
1/[ a(n+1)-1]=[ (an-1)+7]/(2an-2),
1/[ a(n+1)-1]=1/2+7/(2an-2),
设1/(an-1)=bn,b1=1/2,则有:
b(n+1)= 1/2+7/2 bn,
b(n+1)+ 1/5=7/2 (bn+1/5),
所以数列{ bn+1/5}是等比数列,首项b1+1/5=1/2+1/5=7/10,公比为7/2.
∴bn+1/5=7/10•(7/2)^(n-1),
即1/(an-1)= 7/10•(7/2)^(n-1),
1/(an-1)= 7^n/(5•2^n),
∴an-1=(5•2^n)/ 7^n,
an=(5•2^n)/ 7^n+1.