函数f(x)=2sinX-X+1 如何证明它在闭区间[0,3]上连续?
1个回答
由定义容易证明sinX,X在闭区间[0,3]上连续.
而连续函数的四则运算所得函数也连续,所以解决.
相关问题
设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明
设函数f(x)在闭区间[0,1]上连续,又设f(x)只取有理数,且f(1/2)=2,试证在闭区间[0,1]上,f(x)恒
假设函数f(x)在闭区间[0,1]上连续,并且对[0,1]上任意点x有0≤f(x)≤1.试证明[0,1]
假设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,定积分b到a f(x)dx=0,证明在闭区间a,b上恒有f
假设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,定积分b到a f(x)dx=0,证明在闭区间a,b上恒有f
设函数f(x)在闭区间【0,1】上连续,开区间可导,且f(0)=f(1)=0,f(1/2)=1,
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf′(x)=f(x)+3a2x2(a为常数
设f(x)在闭区间[0,1]上连续,f(0)=f(1),证明存在x0属于[0,n-1/n],使得 f(x0)=f(x0+
如何证明一函数在某闭区间内连续